Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica.

نویسندگان

  • Luiz Henrique Rosa
  • Mariana de Lourdes Almeida Vieira
  • Iara Furtado Santiago
  • Carlos Augusto Rosa
چکیده

This work describes the distribution and diversity of fungal endophytes associated with leaves of Colobanthus quitensis, a dicotyledonous plant that lives in Antarctica. A total of 188 fungal isolates were obtained from six different sites located across a 25.5-km transect through Admiralty Bay, at King George Island. The ITS1-5.8S-ITS2 nuclear ribosomal gene was sequenced and the endophytic fungi were identified as species belonging to the genera Aspergillus, Cadophora, Davidiella, Entrophospora, Fusarium, Geomyces, Gyoerffyella, Microdochium, Mycocentrospora, and Phaeosphaeria. Davidiella tassiana was the prevalent species with 20.2% abundance. The endophytic fungal community showed low richness and high dominance indexes. Eleven endophytic taxa (58%) were fungi able to produce melanin in their hyphae, which may confer resistance against freezing temperatures and high rates of UV radiation and may increase their fitness in the extreme conditions of the Antarctic environment. In addition, phytopathogenic and decomposer species associated with healthy leaves of C. quitensis were found. The results obtained in this work show that C. quitensis is an interesting reservoir of saprobic and pathogenic fungal species, and could be a community model for further ecological and evolutionary studies, as well as studies of the adaptation mechanisms these microorganisms have to the extreme conditions in Antarctica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl.

The effects of cold acclimation of two ecotypes (Antarctic and Andes) of Colobanthus quitensis (Kunth) Bartl. Caryophyllaceae on their photosynthetic characteristics and performance under high light (HL) were compared. Non-acclimated plants of the Antarctic ecotype exhibited a higher (34%) maximal rate of photosynthesis than the Andes ecotype. In cold-acclimated plants the light compensation po...

متن کامل

Characterization of antifreeze activity in Antarctic plants.

Deschampsia antarctica and Colobanthus quitensis are the only vascular plants to have colonized the Maritime Antarctic, which is characterized by its permanently low temperature and frequent summer frosts. To understand how the plants survive freezing temperatures year-round, antifreeze activity was assayed in apoplastic extracts obtained from both non-acclimated and cold-acclimated Antarctic p...

متن کامل

Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar ...

متن کامل

Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the...

متن کامل

Biological Interactions and Simulated Climate Change Modulates the Ecophysiological Performance of Colobanthus quitensis in the Antarctic Ecosystem

Most climate and environmental change models predict significant increases in temperature and precipitation by the end of the 21st Century, for which the current functional output of certain symbioses may also be altered. In this context we address the following questions: 1) How the expected changes in abiotic factors (temperature, and water) differentially affect the ecophysiological performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 2010